Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084139

RESUMO

Purpose: To discover the biological function and potential mechanism of LINC01936 in the development of lung squamous cell carcinoma (LUSC). Methods: Transcriptome data of LUSC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the differentially expressed lncRNAs in LUSC and normal tissues by R "DEseq2", "edgeR" and "limma" packages. The subcellular localization of LINC01936 was predicted by lncLocator. Cell proliferation and apoptosis were measured by CCK-8, MTT assay and Hoechst fluorescence staining. The migration and invasion were detected by Transwell assay. The function and pathway enrichment analysis were performed by Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and gene set variation analysis (GSVA). The downstream targets of LINC01936 were predicted using RNA-Protein Interaction Prediction (RPISeq) program. The effect of LINC01936 on tumor immune infiltration was analyzed using Pearson Correlation Analysis using R "ggpubr" package. Results: Based on the gene expression data of LUSC from TCGA database, 1,603, 1,702 and 529 upregulated and 536, 436 and 630 downregulated lncRNAs were obtained by DEseq2, edgeR and limma programs, respectively. For GSE88862 dataset, we acquired 341 differentially expressed lncRNAs (206 upregulated and 135 downregulated). Venn plot for the intersection of above differential expressed lncRNAs showed that there were 29 upregulated and 23 downregulated genes. LINC01936 was one of downregulated lncRNAs in LUSC tissues. The biological analysis showed that the overexpression of LINC01936 significantly reduced proliferation, migration and invasion of LUSC cells, and promoted cell apoptosis. The knockdown of LINC01936 promoted cell proliferation and metastasis. Pathway and GSVA analysis indicated that LINC01936 might participated in DNA repair, complement, cell adhesion and EMT, etc. LINC01936 was predicted to interact with TCF21, AOC3, RASL12, MEOX2 or HSPB7, which are involved in EMT and PI3K-AKT-MTOR pathway, etc. The expression of LINC01936 was also positively correlated with the infiltrating immune cells in LUSC. Conclusions: LINC01936 is downregulated in LUSC. LINC01936 affected proliferation, migration and invasion of LUSC cells probably by EMT and immune infiltration, which might serve as a new target for the treatment of LUSC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Fosfatidilinositol 3-Quinases , Carcinoma de Células Escamosas/genética , Pulmão/metabolismo , Proliferação de Células/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos
2.
ACS Appl Mater Interfaces ; 14(34): 39014-39021, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35983748

RESUMO

Two dimensional (2D) nanomaterials, including graphene, layered double hydroxides, layered transition metal dichalcogenides, and Mxenes, have demonstrated versatility in the fields of bioengineering, sensor, energy storage and conversion by virtue of unique mechanical, thermal, optical, and electrical properties. Nevertheless, integrating silicon-based materials into high-performance energy devices is relatively scarce and highly appreciable because of the challenging production technology. Herein, we reported that silicene was triumphantly assembled into a high-voltage symmetric supercapacitor, which possesses a wide operating potential window (0-3 V), a maximum specific capacitance of 0.41 mF cm-2, a high energy density of 1.22 mJ cm-2, a high power density of 0.49 mW cm-2, and an excellent cycling stability of 96.6% capacitance retention after 10 000 cycles. The comprehensive performance of the silicene high-voltage symmetric supercapacitor is superior to that of the reported silicon-based materials. First-principles calculations reveal that monolayer or few-layer silicene with shorter ion diffusion pathways and higher utilization efficiency of active sites improves ion transport and electron transfer kinetics on the surfaces. To the best of our knowledge, it is the first time that silicene has been applied to the field of supercapacitors. This work will open up new horizons toward the material science research of electrochemical energy devices as well as help to promote the development of the high-performance supercapacitor industry.

3.
ACS Nano ; 15(10): 16533-16541, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34636546

RESUMO

Supercapacitors possessing fast-charging characteristics and long lifespan are becoming increasingly important for powering portable and smart energy storage devices, and combining capacitive and battery-type materials into an integrated device is an effective method for increasing the overall performance of capacitors. Silicene is being designed as a cathode for the development of enhanced capacitance and ultra-cycle stable zinc-ion hybrid capacitors. Possessing a maximum areal capacity of 14 mF cm-2, a maximum power density of 9 mW cm-2, capacitance retention of 112% even after 10 000 cycles, and an unexpectedly high energy density of 23 mJ cm-2, this achievement of the zinc-ion hybrid capacitor would be superior to that of previously reported silicon-based supercapacitors. The DFT calculations further reveal that Zn ions dominate the capacitive behavior of the silicene electrode. The support association between silicene and zinc-ion hybrid capacitors so that they can take advantage of each other's strengths, which takes electrochemical energy technology to a stage, offering a straightforward proposal for integration and implementation of silicon-based materials.

4.
Nanotechnology ; 32(8): 085401, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33176288

RESUMO

For an active electrode material, the morphology, microstructure and the effective specific surface area derived from them, have a dominant effect for the high performance supercapacitors. In this study, 3D interconnected activated carbons with controlled and optimized morphologies and porous structures were prepared from accessible carbon source and graphene oxide by a hydrothermal carbonization and following an activation method. Through optimizing the ratios of the precursors and reaction conditions, an electrode material with excellent specific surface area of 2318 m2 g-1, meso-/macro-pore ratio of 63.2% (meso-/macro-pore volume reached to 0.83 cm3 g-1), as well as an outstanding electrical conductivity of 46.6 S m-1, was obtained. The materials exhibit superior double-layer capacitive performances on a symmetric supercapacitor, delivering superior specific capacitance of 157 F g-1 in organic electrolyte system at current density of 0.5 A g-1, excellent energy density of 37.6 W h kg-1 with a power density of 7.1 kW kg-1 and good cycling stability of capacitance retention of 94% over 7000 cycles. These results offer a practical method to prepare the desired carbon electrode materials with controlled morphology and structure for high efficiency electrochemical energy storage devices.

5.
Talanta ; 220: 121397, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928416

RESUMO

There is a challenge to obtain an ultrasensitive and rapid approach to detect bacteria and identify resistance. As a powerful bioanalytical tool, surface-enhanced Raman scattering (SERS) in bacterial detection have attracted increasing attentions. Herein, we developed a SERS-active Au@Ag core-shell nanorod (Au@AgNR) tag platform for ultrasensitive bacteria detection and antibiotic-susceptibility testing (AST). The platform established that surface enhanced Raman scattered Rhodamine 6G (R6G) absorption at 1517 cm-1 had a good linearity (RI = 3865 + 193logC; R2 = 0.97) with logarithm of E. coli concentration over a range of 107-102 CFU (colony forming unit)/mL with limit of detection as low 102 CFU/mL. When E. coli was exposed to ampicillin at minimum inhibitory concentration (MIC, 4 µg/mL), Raman spectroscopy showed the obvious variation between ampicillin-susceptible E. coli (Amp--E. coli) and the ampicillin-resistant E. coli (Amp+-E. coli). Combined with principal component analysis (PCA) statistical analysis, the Raman intensity variation mentioned above allows to obtain rapid antibiotic resistance testing (<3.5 h). In addition, E.coli spiked into blood from C57BL/6 mice can be identified clearly, indicating the potential for point-of-care diagnostics.


Assuntos
Nanotubos , Prata , Animais , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Ouro , Camundongos , Camundongos Endogâmicos C57BL , Análise Espectral Raman
6.
ACS Nano ; 13(7): 7463-7470, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31136711

RESUMO

The construction of multidimensional, diversified microsupercapacitors (MSC) is urgently needed for fast-changing flexible and wearable microelectronics, which still meets the challenges of tedious construction and difficult integration. Herein, a laser direct writing strategy has been developed for the one-step preparation of multiscale MSCs from editable macro-supercapacitors. The microstructured supercapacitors with predefined multiscale shapes not only maintain the high capacitance performance and stability but also display the tensile properties in arbitrary direction. The heat-treated ion liquid-modified reduced graphene oxide guarantees the thermal stability of an electrode material during laser cutting, and its high ion-accessible surface area improves the capacitance performance of the supercapacitor. The as-fabricated MSC demonstrates a wide voltage window (0-3 V), high areal specific capacitance (27.4 mF cm-2), and high energy density (32.1 µW h cm-2), which are far higher than those of most reported articles. Notably, the editable supercapacitors can imitate the stereo paper cutting to achieve an arbitrary one-dimensional to three-dimensional configuration, promising for various portable, stretchable, and wearable devices.

7.
Data Brief ; 18: 1448-1456, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29904649

RESUMO

The data presented in this data article are related to the research article entitled "Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors" (Lu et al., 2017) [1]. The detailed structure data of the prepared mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area and the electrochemical performance data of the corresponding supercapacitors are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...